

Khatra Adibasi Mahavidyalaya

Khatra, Bankura, West Bengal

Department of Mathematics

Syllabus Module (2019-2020)

Syllabus Module

Dept. Of Mathematics

Session : 2019-2020

Khatra Adibasi Mahavidyalaya

	ç	Semester -1			
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG	15	
		Unit 2	CDG	15	

Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (log x)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.			
Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.	MN	15	
Cone, ellipsoid. Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular	AI	15	60

		solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.		
SH/MTH/	Algebra	Unit 1 Polar representation	AI	15
102/C-2		of complex numbers,		
		nth roots of unity, De		
		Moivre's theorem for		
		rational indices and		
		its applications.		
		Theory of equations:		
		Relation between roots and		
		coefficients,		
		Transformation of		
		equation, Descartes		
		rule of signs, Cubic		
		and biquadratic		
		equation.		
		Inequality: The		
		inequality involving		
		AM≥GM≥HM,		
		Cauchy-Schwartz inequality.		
		Unit 2	AI	15
		Equivalence		10
		relations. Functions,		
		Composition of		
		functions, Invertible		
		functions, One to one		
		correspondence and		
		cardinality of a set.		
		Well-ordering		

property of positive			
integers, Division			
algorithm, Divisibility			
and Euclidean			
algorithm.			
Congruence relation			
between integers.			
Principles of			
Mathematical			
Induction, statement			
of Fundamental			
Theorem of			
Arithmetic.			
Unit 3	MN	15	
Systems of linear			
equations, row			
reduction and			
echelon forms, vecto	r		
equations, the matrix			
equation Ax=b,			
solution sets of linea	r		
systems, applications	6		
systems, applications of linear systems,	5		
of linear systems,		15	60
of linear systems, linear independence.	MN	15	60
of linear systems, linear independence. Unit 4	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices.	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix,	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix.	MN	15	60
of linear systems, linear independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton	MN	15	60

SH/MTH/	Calculus,	Unit 1	CDG	15
103/GE-1	Geometry &	Hyperbolic functions,		
	Differential	higher order		
		derivatives, Leibnitz		
	Equation (GE	rule and its		
	T1)	applications to		
		problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.		
		Unit 2	CDG	15
		Reduction formulae,	CDU	15
		derivations and		
		illustrations of		
		reduction formulae of		
		the type $\int sin^n x dx$,		
		$\int \cos^n x \ dx$,		
		$\int tan^n x dx,$ $\int sec^n x dx \int (logx)^n dx$ $, \int sin^m x cos^n x dx,$ parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.		
		Unit 3	CDG	15

	Reflection properties			
	of conics, rotation of			
	axes and second			
	degree equations,			
	classification of			
	conics using the			
	discriminant, polar			
	equations of conics.			
	Spheres. Cylindrical			
	surfaces. Central			
	conicoids,			
	paraboloids, plane			
	sections of conicoids,			
	Generating lines,			
	classification of			
	quadrics, Illustrations			
	of graphing standard			
	quadric surfaces like			
	cone, ellipsoid.			
	Unit 4	CDG	15	60
	Differential equations			
	and mathematical			
	and mathematical			
	and mathematical models. General, particular, explicit,			
	and mathematical models. General,			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a			
	and mathematical models. General, particular, explicit, implicit and singular			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors,			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors			
	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.			
Tentative dates of Internal	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	tweek	of Nov	vember
Tentative dates of Internal	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	tweek	of Nov	vember
Tentative dates of Internal	and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. Assessment is firs	tweek	of Nov	vember

SEMESTER - II

Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH/	Real Anlysis	Unit 1	AI	15	
201/C-3		Review of Algebraic and Order Properties of R, ε - neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets, compact sets in R, Heine-Borel		15	
		Theorem.			
		Unit 2 Sequences, Bounded sequence,	RB	15	

		Convergent			
		sequence, Limit of a			
		sequence, lim inf, lim			
		sup. Limit Theorems.			
		Monotone			
		Sequences,			
		Monotone			
		Convergence			
		Theorem.			
		Subsequences,			
		Divergence Criteria.			
		Monotone			
		Subsequence			
		Theorem (statement			
		only), Bolzano			
		Weierstrass Theorem			
		for Sequences.			
		Cauchy sequence,			
		Cauchy's			
		Convergence			
		Criterion.			
		Unit 3	RB	20	50
				20	30
		Infinite series,		20	50
				20	50
		Infinite series,		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy		20	50
		Infinite series, convergence and divergence of infinite		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence:		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test,		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test,		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test.		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series,		20	50
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute		20	
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional		20	
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence.			
SH/MTH/	Differential	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1	CDG	15	
SH/MTH/ 202/C-4	Differential Equations	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1 Lipschitz condition			
		Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1 Lipschitz condition and Picard's			
	Equations	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1 Lipschitz condition and Picard's Theorem (Statement			
	Equations and Vector	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General			
	Equations and	Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. Alternating series, Leibniz test. Absolute and Conditional convergence. Unit 1 Lipschitz condition and Picard's Theorem (Statement			

			1
equation of second			
order, principle of			
super position for			
homogeneous			
equation, Wronskian:			
its properties and			
applications, Linear			
homogeneous and			
non-homogeneous			
equations of higher			
order with constant			
coefficients, Euler's			
equation, method of			
undetermined			
coefficients, method			
of variation of			
parameters.			
Unit 2	CDG	15	
Systems of linear			
differential			
equations, types of			
linear systems,			
differential operators,			
an operator method			
for linear systems			
with constant			
coefficients,			
Basic Theory of			
linear systems in			
normal form,			
homogeneous linear			
systems with			
constant coefficients:			
Two Equations in two			
unknown functions.			
Unit 3	CDG	15	
Equilibrium points,			
Interpretation of the			
phase plane			
Power series solution			
of a differential			
equation about an			
ordinary point,			
	1		1
solution about a			

		regular singular			
		point.			
		Unit 4		4 -	<u> </u>
			MN	15	60
		Triple product,			
		introduction to vector			
		functions, operations			
		with vector-valued			
		functions, limits and			
		continuity of vector			
		functions,			
		differentiation and			
		integration of vector			
		functions.			
SH/MTH/	Real	Unit 1	AI	15	
		Review of Algebraic		13	
203/GE-2	Analysis (GE	and Order Properties			
	T3)	of R, ε -			
		neighbourhood of a			
		point in R. Idea of			
		countable sets,			
		uncountable sets and			
		uncountability of R.			
		Bounded above sets,			
		Bounded below sets,			
		Bounded Sets,			
		Unbounded sets.			
		Suprema and Infima.			
		Completeness			
		Property of R and its			
		equivalent properties.			
		The Archimedean			
		Property, Density of			
		Rational (and			
		Irrational) numbers in			
		R, Intervals. Limit			
		points of a set,			
		Isolated points, Open			
		set, closed set,			
		derived set,			
		Illustrations of			
		Bolzano-Weierstrass			
		theorem for sets,			
		compact sets in R,			
		Heine-Borel			

Theorem.			
Unit 2	RB	15	
Sequences, Bounded			
sequence,			
Convergent			
sequence, Limit of a			
sequence, lim inf, lim			
sup. Limit Theorems.			
Monotone			
Sequences,			
Monotone			
Convergence			
Theorem.			
Subsequences,			
Divergence Criteria.			
Monotone			
Subsequence			
Theorem (statement			
only), Bolzano			
Weierstrass Theorem			
for Sequences.			
Cauchy sequence,			
Cauchy's			
Convergence			
Criterion.			
Unit 3	RB	20	50
Infinite series,			
convergence and			
divergence of infinite			
series, Cauchy			
Criterion, Tests for			
convergence:			
Comparison test,			
Limit Comparison			
test, Ratio Test,			
Cauchy's nth root			
test, Integral test.			
Alternating series,			
Leibniz test. Absolute			

Tentative dates of Internal Assessment is September 2020 SEMESTER – III						
SH/MTH/ 301/C-5	Theory of Real Functions & Introduction to Metric Space	Unit 1 Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.	MN	15		
		Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable	MN	15		

neighbourhood, open			
closed balls,			
examples. Open and			
Definition and			
Metric spaces:			
Unit 4	CDG	15	60
inequalities.			
Taylor's theorem to			
Application of			
$1/ax + b$ and $(1 + x)^{n}$.			
functions, $ln(1 + x)$,			
trigonometric			
exponential and			
expansions of			
Maclaurin's series			
Taylor's series and			
relative extrema.			
convex functions,			
application of Taylor's theorem to			
Cauchy's form of remainder,			
remainder, Taylor's theorem with			
Lagrange's form of			
theorem with			
theorem. Taylor's			
Cauchy's mean value			
Unit 3	MN	15	
polynomials.			
approximation of			
inequalities and			
value theorem to			
Applications of mean			
Darboux's theorem.			
derivatives,			
property of			
intermediate value			
Mean value theorem,			
Rolle's theorem.			
extremum theorem.			
extrema, interior			

		set, interior of a set.			
		Limit point of a set,			
		closed set, diameter			
		of a set, subspaces,			
		dense sets,			
		separable spaces.			
SH/MTH/	Group	Unit 1	MN	15	
302/ C-6	Theory-I	Symmetries of a			
		square, Dihedral			
		groups, definition and			
		examples of groups			
		including			
		permutation groups			
		and quaternion			
		groups (through			
		matrices),			
		elementary			
		properties of groups.			
		Unit 2	MN	15	
		Subgroups and			
		examples of			
		subgroups,			
		centralizer,			
		normalizer, center of			
		a group, product of			
		two subgroups.			
		Unit 3	MN	15	
		Properties of cyclic			
		groups, classification			
		of subgroups of			
		cyclic groups. Cycle			
		notation for			
		permutations,			
		properties of			
		permutations, even			
		and odd			
		permutations,			
		alternating group,			
		properties of cosets ,			
		Lagrange's theorem			
		and consequences			
		including Fermat's			
		Little theorem.			

		Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups.	MN	15	
		Unit 5 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.	MN	15	75
SH/MTH /303/C-7	Numerical Methods Numerical Methods Lab	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off.	CDG	15	
		Truncation. Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton-	CDG	15	
		Raphson method. Rate of convergence of these methods. Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method,	AI	15	

	quadrature formula. The algebraic eigenvalue problem: Power method. Approximation: Least			
	Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss			
	Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpsons 3/8th rule, Weddle's rule,			
	Numerical differentiation: Methods based on interpolations, methods based on finite differences. Unit 5 Numerical	AI	15	75
	Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation.			
	Gauss Seidel method and their convergence analysis. LU Decomposition Unit 4 Interpolation:	AI	15	

304/GE-3	(GET2)	Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of		
		rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.		
		Unit 2 Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic. Unit 3	MN	15
		Unit 3 Systems of linear	MN	15

	values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse			
	subspaces of R ⁿ , rank of a matrix, Eigen			
	characterizations of invertible matrices. Subspaces of R ⁿ , dimension of			
	transformations, matrix of a linear transformation, inverse of a matrix,			
	linear independence. Unit 4 Introduction to linear	MN	15	60
	echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems,			

				topic	S
SH/MTH	Riemann	Unit 1	MN	15	
/401/C-8	Integration	Riemann integration:			
	and Series of	inequalities of upper			
	Functions	and lower sums,			
	Functions	Darbaux integration,			
		Darbaux theorem,			
		Riemann conditions			
		of integrability,			
		Riemann sum and			
		definition of Riemann			
		integral through			
		Riemann sums,			
		equivalence of two			
		Definitions.			
		Riemann integrability			
		of monotone and			
		continuous functions,			
		Properties of the			
		Riemann integral;			
		definition and			
		integrability of			
		piecewise continuous			
		and monotone			
		functions.			
		Intermediate Value			
		theorem for Integrals.			
		Fundamental			
		theorem of Integral			
		Calculus.			
		Unit 2	MN	15	
		Improper integrals.			
		Convergence of Beta			
		and Gamma			
		functions.			
		Unit 3	MN	15	
		Pointwise and			
		uniform convergence			
		of sequence of			
		functions. Theorems			
		on continuity,			
		derivability and			
		integrability of the			

		limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M- Test.			
		Unit 4 Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition. Examples of Fourier expansions and summation results for series.	MN	15	
		Unit 5 Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series; Abel's Theorem; Weierstrass Approximation Theorem.	MN	15	75
SH/MTH/402/C -9	Multivariate Calculus	Unit 1 Functions of several variables, limit and continuity of functions of two or more variables	AI	15	

D. I.I.			
Partial			
differentiation, total			
differentiability and			
differentiability,			
sufficient condition			
for differentiability.			
Chain rule for one			
and two independent			
parameters,			
directional			
derivatives, the			
gradient, maximal			
and normal property			
of the gradient,			
tangent planes,			
Extrema of functions			
of two variables,			
method of Lagrange			
multipliers,			
constrained			
optimization			
problems			
Unit 2	A 1	4 -	
Unit Z	AI	15	
Double integration	AI	15	
	AI	15	
Double integration	AI	15	
Double integration over rectangular	AI	15	
Double integration over rectangular region, double	AI	15	
Double integration over rectangular region, double integration over non-	AI	15	
Double integration over rectangular region, double integration over non- rectangular region,	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates,	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals,	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals,	ΑΙ	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co-	ΑΙ	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and	ΑΙ	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals and triple	ΑΙ	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals			
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals and triple integrals	AI	15	
Double integration over rectangular region, double integration over non- rectangular region, Double integrals in polar co-ordinates, Triple integrals, Triple integrals, Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals			

		curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path.			
		Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.	AI	15	60
SH/MTH /403/C-10	Ring Theory and Linear Algebra-I	Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	CDG	15	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients. Unit 3	CDG RB	15	
		Vector spaces, subspaces, algebra of subspaces,			

		quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	RB	15	60
SH/MTH /404/GE-4	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of	CDG	15	

		1	
undetermined			
coefficients, method			
of variation of			
parameters.			_
Unit 2	CDG		
Systems of linear			
differential			
equations, types of			
linear systems,			
differential operators,			
an operator method			
for linear systems			
with constant			
coefficients,			
Basic Theory of			
linear systems in			
normal form,			
homogeneous linear			
systems with			
constant coefficients:			
Two Equations in two			
unknown functions.			
Unit 3	CDG	15	
Unit 3 Equilibrium points,	CDG	15	
	CDG	15	
Equilibrium points,	CDG	15	
Equilibrium points, Interpretation of the	CDG	15	
Equilibrium points, Interpretation of the phase plane	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution of a differential	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point,	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a	CDG	15	
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular	CDG	15	60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product,			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions,			60
Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and			60

SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism	RB	15	
		of graphs. Unit 2	RB	15	
		Eulerian circuits, Eulerian graph, semi- Eulerian graph, theorems, Hamiltonian cycles,theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,			
		Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	RB	20	50
Tentative		al Assessment is i MESTER – V	in Septe	mber2	020
Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH /	Partial	Unit 1	AI	15	

E01/0 11		Partial Differential		
501/C-11	Differential	Equations – Basic		
	Equations	concepts and		
	and	Definitions.		
	Applications	Mathematical		
		Problems. First-		
		Order Equations:		
		Classification,		
		Construction and		
		Geometrical		
		Interpretation.		
		Method of		
		Characteristics for		
		obtaining General		
		Solution of Quasi		
		Linear Equations.		
		Canonical Forms of		
		First-order Linear		
		Equations. Method of		
		Separation of		
		Variables for solving		
		first order partial		
		differential		
		equations.		
		Unit 2	A 1	1 -
		Derivation of Heat	AI	15
		equation, Wave		
		equation and Laplace		
		equation.		
		Classification of		
		second order linear		
		equations as		
		hyperbolic, parabolic		
		or elliptic. Reduction		
		of second order		
		Linear Equations to		
		canonical forms.		
		Unit 3		4 -
			AI	15
		The Cauchy problem,		
		Cauchy-		
		Kowalewskaya		
		theorem, Cauchy		
		problem of an infinite		
		string. Initial		

		Boundary Value Problems. Semi- Infinite String with a fixed end, Semi- Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem. Solving the Heat Conduction problem Unit 4	AI	15	60
		Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.		15	00
SH/MTH / 502/C-12	Group Theory - II	Unit 1 Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.	MN	15	

	Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN	15	
	Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.	MN	15	
	Unit 4 Groups acting on themselves by conjugation, class equation and consequences, conjugacy <i>in S_n</i> , p-	MN	15	60
	groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of A _n for n ≥ 5, non-simplicity tests.			

unboundedness, the			
simplex algorithm,			
simplex method in			
tableau format,			
introduction to			
artificial variables,			
two - phase method.			
Big - M method and			
their comparison.			
Unit 2	CDG	15	
Duality, formulation			
of the dual problem,			
primal - dual			
relationships,			
economic			
interpretation of the			
dual.			
Transportation			
problem and its			
mathematical			
formulation,			
northwest - corner			
method, least cost			
method and Vogel			
approximation			
method for			
determination of			
starting basic			
solution, algorithm			
for solving			
transportation			
problem, assignment			
problem and its			
mathematical			
formulation,			
Hungarian method			
for solving			
assignment problem.			
Unit 3	CDC	20	50
Game theory:	CDG	20	50
formulation of two			
person zero sum			
games, solving two			
person zero sum			

		mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential. Unit 2 Joint cumulative distribution function and its properties,	AI	15	
SH/MTH / 504/ DSE-2	Probability and Statistics (DSE T4)	games, games with mixed strategies, graphical solution procedure, linear programming solution of games. Unit 1 Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions,	AI	15	

	expectations,			
	independent random			
	variables, bivariate			
	normal distribution,			
	correlation			
	coefficient, joint			
	moment generating			
	function (jmgf) and			
	calculation of			
	covariance (from			
	jmgf), linear			
	regression for two			
	variables.			
	Unit 3	AI	15	
	Chebyshev's			
	inequality, statement			
	and interpretation of			
	(weak) law of large			
	numbers and strong			
	law of large numbers.			
	Central Limit			
	theorem for			
	independent and			
	identically distributed			
	random variables			
	with finite variance,			
	Markov Chains,			
	Chapman-			
	Kolmogorov			
	equations,			
	classification of			
	states.			
	Unit 4	AI	15	60
	Random Samples,			
	Sampling			
	Distributions,			
	Estimation of			
	parameters, Testing			
	of hypothesis.			
entative dates of Internal	Assessment is fire	t wee	k of Nov	

SEMESTER – VI

Course Code	Course Title	Course Topics	Teacher s	No. of lecture s per topic	Total no. of lecture s
SH/MTH /Metric601/C-13Spaces andComplexAnalysis	Spaces and Complex	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem.	RB	15	
		Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine- Borel property, Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction mappings. Banach Fixed point Theorem and its application to ordinary differential equation.	RB	15	

Unit 3	AI	15	
Limits, Limits			
involving the point at			
infinity, continuity.			
Properties of			
complex numbers,			
regions in the			
complex plane,			
functions of complex			
variable, mappings.			
Derivatives,			
differentiation			
formulas, Cauchy-			
Riemann equations,			
sufficient conditions			
for differentiability.			
Unit 4	AI	15	
Analytic functions,			
examples of analytic			
functions,			
exponential function,			
Logarithmic function,			
trigonometric			
function, derivatives			
of functions, and			
definite integrals of			
functions. Contours,			
Contour integrals and			
its examples, upper			
bounds for moduli of			
contour integrals.			
Cauchy- Goursat			
theorem, Cauchy			
integral formula.			
Unit 5	AI	15	
Liouville's theorem			
and the fundamental			
theorem of algebra.			
Convergence of			
sequences and			
series, Taylor series			
and its examples.			
Unit 6	AI	15	90
Laurent series and its			

		avamplas abs-lut-			
		examples, absolute and uniform			
		convergence of			
		power series.			
SH/MTH /	Ring Theory	Unit 1	RB	15	
602/C-14	and Linear	Polynomial rings over			
	Algebra II	commutative rings,			
		division algorithm			
		and consequences,			
		principal ideal			
		domains,			
		factorization of			
		polynomials,			
		reducibility tests,			
		irreducibility tests,			
		Eisenstein criterion,			
		and unique factorization in Z [x].			
		Divisibility in integral			
		domains, irreducible,			
		primes, unique factorization			
		domains, Euclidean			
		domains, Euclidean domains.			
		Unit 2	CDG	15	
		Dual spaces, dual			
		basis, double dual,			
		transpose of a linear transformation and			
		its matrix in the dual			
		basis, annihilators.			
		Eigen spaces of a			
		linear operator,			
		diagonalizability,			
		invariant subspaces			
		and Cayley-Hamilton			
		theorem, the minimal			
		polynomial for a			
		linear operator,			
		canonical forms.			
		Unit 3	CDG		
		Inner product spaces	CDG		
		and norms, Gram-			
		Schmidt			
		Schinict			

SH/MTH / 603/ DSE-3	Number Theory (DSE T7)	orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem. Unit 1 Linear Diophantine equation, prime counting function,	MN		
		statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem.			
		Unit 2 Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem, reduced set of	MN	15	

		properties of Euler's phi-function.			
		Unit 3	MN	20	50
		Order of an integer			
		modulo n, primitive			
		roots for primes,			
		composite numbers			
		having primitive			
		roots, Euler's			
		criterion, the			
		Legendre symbol and			
		its properties,			
		quadratic reciprocity,			
		quadratic			
		congruences with			
		composite moduli.			
		Public key			
		encryption, RSA			
		encryption and			
		decryption, the			
		equation $x^2 + y^2 = z^2$,			
		Fermat's Last			
		theorem.			
SH/MTH/	Project Work		AI		
604/ DSE-4					
UU4/ DOC-4					

Tentative date of Internal Assessment is in September 2020.